SKKD 60F

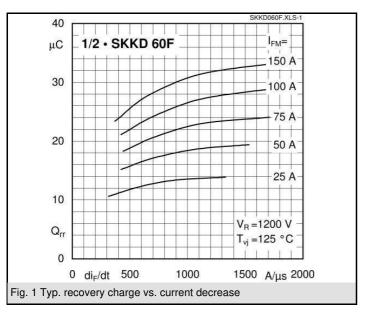
SEMIPACK[®] 2

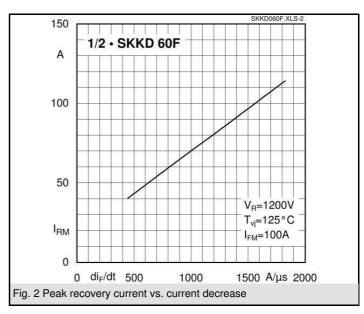
Fast Diode Modules

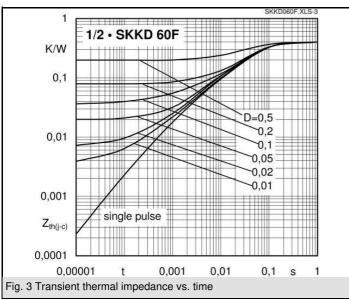
SKKD 60F

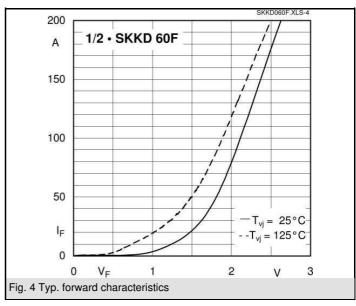
Features

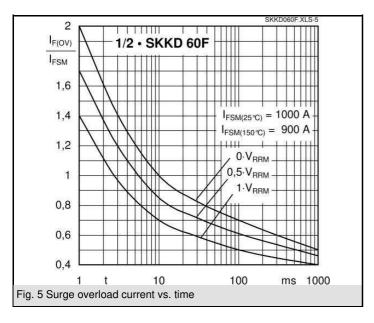
- Heat transfer through ceramic isolated metal baseplate
- Very short recovery times
- Soft recovery
- · Low switching losses
- Up to 1600 V peak inverse voltage
- UL recognized, file no. E 63 532

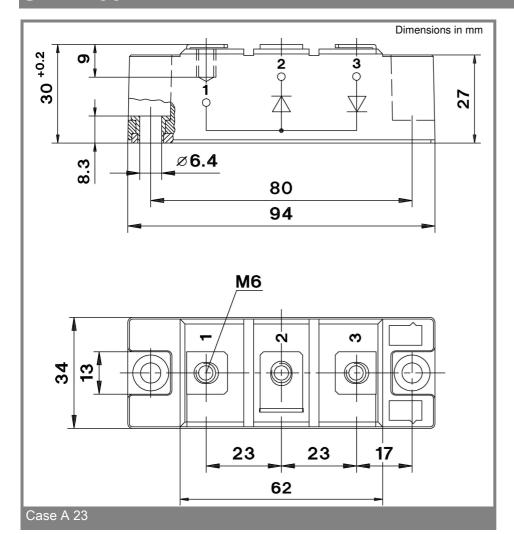

Typical Applications*

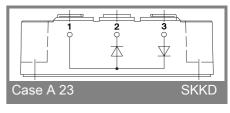

- Self-commutated inverters
- · DC choppers
- AC motor speed control
- inductive heating
- Uninterruptible power supplies
- · Electronic welders
- General power switching applications


V _{RSM}	V _{RRM}	I_{FRMS} = 110 A (maximum value for continuous operation)	
V	V	I_{FAV} = 60 A (sin. 180; 50 Hz; T_c = 83 °C)	
1700	1700	SKKD 60F17	


Symbol	Conditions	Values	Units
I _{FAV}	sin. 180; T _c = 85 (100) °C	58 (49)	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	1000	Α
	T _{vi} = 150 °C; 10 ms	900	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	5000	A²s
	T _{vj} = 150 °C; 8,3 10 ms	4000	A²s
V_{F}	T _{vi} = 25 °C; I _F = 100 A	max. 2,7	V
$V_{(TO)}$	T _{vj} = 150 °C	max. 1,5	V
r _T	T _{vj} = 150 °C	max. 9	mΩ
I_{RD}	$T_{vj} = 25 ^{\circ}\text{C}; V_{RD} = V_{RRM}$	max. 0,4	mA
I_{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM}	max. 25	mA
Q _{rr}	T _{vi} = 125 °C, I _F = 60 A,	18	μC
I_{RM}	-di/dt = 500 A/μs, V _R = 1200 V	60	Α
t _{rr}		800	ns
E _{rr}		5	mJ
R _{th(j-c)}	per diode / per module	0,4 / 0,2	K/W
R _{th(c-s)}	per diode / per module	0,1 / 0,05	K/W
T _{vj} `´		- 40 + 150	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	4800 / 4000	V~
M_s	to heatsink	5 ± 15 %	Nm
M_t	to terminals	5 ± 15%	Nm
а		5 * 9,81	m/s²
m	approx.	160	g
Case		A 23	







SKKD 60F

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.